Bayesian Decision Methods

Type
Generative Classification Model

Also see, 4. Bayesian Decision Theory

Given observation x, the decision is based on posterior probability:

  • Decide $y_1$, if $P(y_1 \vert x) > P(y_2 \vert x)$
  • Decide $y_2$, if $P(y_2 \vert x) > P(y_1 \vert x)$

Note that, $P(y_1 \vert x) = {P(x \vert y_1).P(y_1) \over P(x)}$ and $P(y_2 \vert x) = {P(x \vert y_2).P(y_2) \over P(x)}$ so the probability $P(x)$ does not matter in our decision (same for both).

Probability of error:

P(errorx)={P(y1x),if decide y2 but y1 is trueP(y2x),if decide y1 but y2 is trueP(error \vert x) = \begin{cases} P(y_1 \vert x), & \text{if decide } y_2 \text{ but } y_1 \text{ is true} \\ P(y_2 \vert x), & \text{if decide } y_1 \text{ but } y_2 \text{ is true} \end{cases}

Goal is to minimize error (based on single instance):

P(errorx)=min[P(y1x),P(y2x)]P(error \vert x) = min[P(y_1 \vert x), P(y_2 \vert x)]

Minimizing average error:

P(error)=P(error,x)dx=P(errorx)p(x)dxP(error) = \int_{-\infty}^{\infty} P(error, x)\,dx = \int_{-\infty}^{\infty} P(error \vert x)p(x)\,dx

Generalizing for more classes:

  • Feature vector $x = (x1,x2,…,x_d)$ ∈ $R^d$: allow use of more than one feature
  • $y1,y2,…,y_c$: finite set of c states of nature, i.e., categories (can be more than two)
  • $\alpha_1,\alpha_2,…,\alpha_a$: a finite set of possible actions
  • $λ(α_i \vert y_i)$: loss function, describes the loss incurred for taking action $\alpha_i$ when state of nature is $y_i$
  • $P(y_i)$: prior probability that state of nature is $y_i$
  • $p(x \vert yi)$: state conditional probability for $x$

The expected loss, or conditional risk, of taking action $\alpha_i$ is:

R(αix)=j=1cλ(αiyj)P(yjx)R(\alpha_i\vert x) = \sum_{j=1}^{c} \lambda(\alpha_i\vert y_j)P(y_j \vert x)

Choose $\alpha(x)$ that minimizes overall risk:

R=R(α(x)x)p(x)dxR = \int R(\alpha(x) \vert x)p(x)\,dx

R(αix)=j=1cλ(αiyj)P(yjx)R(\alpha_i \vert x) = \sum_{j=1}^{c} \lambda(\alpha_i \vert y_j)P(y_j \vert x)

α=argminαiR(αix)\alpha^*=argmin_{\alpha_i}R(\alpha_i \vert x)